top of page

Dexmedetomidine

Grade

Opiate Combinations

Dosing Options

[Dexmedetomidine-Buprenorphine]+Alfaxalone | Intravenous Anaesthesia

  1. Preoxygenate: Place in an oxygen chamber as sedation commences (Approx 5 mins)

  2. Premedicate: Dexmedetomidine 0.1-0.2 mg/kg + Buprenorphine 0.05 mg/kg. Together IM

  3. Induce: One sedation, analgesia, and preoxygenation (5 mins) have taken effect to induce with Alfaxalone at 3-5 mg/kg slow IV to effect (Range 1-10 mg/kg)

  4. Intubation: Subsequent intubation and maintenance using a volatile agent (e.g. Isoflurane) with supplementary oxygen is recommended for all painful or significant procedures.

  5. Reversal: Optional. *Reversal with Atipamezole


Evidence Base: (Bradley et al., 2022)

[Dexmedetomidine-Butorphanol] +Alfaxalone | Intramuscular Sedation

  1. Preoxygenate: Place in an oxygen chamber as sedation commences (Approx 5 mins)

  2. Premedicate: Dexmedetomidine 0.2 mg/kg + Butorphanol 0.3 mg/kg, together, IM

  3. Induce: One sedation, analgesia and preoxygenation (5 mins) have taken effect to induce with Alfaxalone slow IV to effect (Range 0.3-10 mg/kg)

  4. Intubation: Subsequent intubation and maintenance using a volatile agent (e.g. Isoflurane) with supplementary oxygen is recommended for all painful or significant procedures.

  5. Reversal: Optional. *Reversal with Atipamezole


Evidence Base:


Reversal

  • Atipamezole

Evidence Base:

Therapeutics

Evidence

Dexmedetomidine | Rabbit | Literature Review

  1. Bailey, R.S., Barter, L.S., Pypendop, B.H., 2017. Pharmacokinetics of dexmedetomidine in isoflurane-anesthetized New Zealand White rabbits. Vet Anaesth Analg 44, 876–882. https://doi.org/10.1016/j.vaa.2017.01.003

  2. Bellini, L., Banzato, T., Contiero, B., Zotti, A., 2014. Evaluation of sedation and clinical effects of midazolam with ketamine or dexmedetomidine in pet rabbits. Vet Rec 175, 372. https://doi.org/10.1136/vr.102595

  3. Blake, D.W., Ludbrook, J., Van Leeuwen, A.F., 2000. Dexmedetomidine and haemodynamic responses to acute central hypovolaemia in conscious rabbits. Clin Exp Pharmacol Physiol 27, 801–809. https://doi.org/10.1046/j.1440-1681.2000.03345.x

  4. Bradley, M.P., Doerning, C.M., Nowland, M.H., Lester, P.A., 2019. Intramuscular Administration of Alfaxalone Alone and in Combination for Sedation and Anesthesia of Rabbits (Oryctolagus cuniculus). J Am Assoc Lab Anim Sci 58, 216–222. https://doi.org/10.30802/AALAS-JAALAS-18-000078

  5. Bradley, M.P., Doerning, C.M., Nowland, M.H., Pasloske, K., Lester, P.A., 2022. Evaluation of alfaxalone total intravenous anesthesia in rabbits (Oryctolagus cuniculus) premedicated with dexmedetomidine or dexmedetomidine and buprenorphine. Vet Anaesth Analg S1467-2987(22)00013–7. https://doi.org/10.1016/j.vaa.2022.01.006

  6. Cardoso, C.G., Ayer, I.M., Jorge, A.T., Honsho, C.S., Mattos-Junior, E., 2020. A comparative study of the cardiopulmonary and sedative effects of a single intramuscular dose of ketamine anesthetic combinations in rabbits. Res Vet Sci 128, 177–182. https://doi.org/10.1016/j.rvsc.2019.11.016

  7. Chang, C., Uchiyama, A., Ma, L., Mashimo, T., Fujino, Y., 2009. A comparison of the effects on respiratory carbon dioxide response, arterial blood pressure, and heart rate of dexmedetomidine, propofol, and midazolam in sevoflurane-anesthetized rabbits. Anesth Analg 109, 84–89. https://doi.org/10.1213/ane.0b013e3181a2ad5f

  8. Cosar, M., Eser, O., Fidan, H., Sahin, O., Buyukbas, S., Ela, Y., Yagmurca, M., Ozen, O.A., 2009. The neuroprotective effect of dexmedetomidine in the hippocampus of rabbits after subarachnoid hemorrhage. Surg Neurol 71, 54–59; discussion 59. https://doi.org/10.1016/j.surneu.2007.08.020

  9. de Pereira Cardoso, H.D., Fim, N.C., Marques, M.A., Mint, H., de Vasconcelos Machado, V.M., Solanki, D.R., Lima, R.M., de Carvalho, A.L., Navarro, L.H., Ganem, E.M., 2016. Clinical and Histological Effects of the Intrathecal Administration of a Single Dose of Dexmedetomidine in Rabbits. Pain Physician 19, E319-327.

  10. Desprez, I., Pelchat, J., Beaufrère, H., Beazley, S.G., Duke-Novakovski, T., 2022. Agreement of caudal aortic arterial blood pressure with oscillometry using two cuff widths placed on the thoracic or pelvic limbs of sevoflurane-anesthetized rabbits. Vet Anaesth Analg 49, 390–397. https://doi.org/10.1016/j.vaa.2022.03.004

  11. Ferrini, E., Leo, L., Corsi, L., Catozzi, C., Salomone, F., Ragionieri, L., Pennati, F., Stellari, F.F., 2021. A new anesthesia protocol enabling longitudinal lung-function measurements in neonatal rabbits by micro-CT. Am J Physiol Lung Cell Mol Physiol 321, L1206–L1214. https://doi.org/10.1152/ajplung.00328.2021

  12. González-Gil, A., Picazo, R.A., de Bruyn, P., Illera, J.C., 2018. Corticoadrenal and Cardiorespiratory Responses to Administration of Propofol Combined with Dexmedetomidine or Ketamine in Rabbits. J Am Assoc Lab Anim Sci 57, 278–281.

  13. González-Gil, A., Villa, A., Millán, P., Martínez-Fernández, L., Illera, J.C., 2015. Effects of Dexmedetomidine and Ketamine-Dexmedetomidine with and without Buprenorphine on Corticoadrenal Function in Rabbits. J Am Assoc Lab Anim Sci 54, 299–303.

  14. Konakci, S., Adanir, T., Yilmaz, G., Rezanko, T., 2008. The efficacy and neurotoxicity of dexmedetomidine administered via the epidural route. Eur J Anaesthesiol 25, 403–409. https://doi.org/10.1017/S0265021507003079

  15. MacDonald, E., Vartiainen, J., Jäsberg, K., Vuorilehto, L., Salonen, J.S., Urtti, A., 1993. Systemic absorption and systemic effects of ocularly administered dexmedetomidine in rabbits. Curr Eye Res 12, 451–460. https://doi.org/10.3109/02713689309024627

  16. Marín, P., Belda, E., Laredo, F.G., Torres, C.A., Hernandis, V., Escudero, E., 2020. Pharmacokinetics and sedative effects of alfaxalone with or without dexmedetomidine in rabbits. Res Vet Sci 129, 6–12. https://doi.org/10.1016/j.rvsc.2019.12.015

  17. Nishida, T., Nishimura, M., Kagawa, K., Hayashi, Y., Mashimo, T., 2002. The effects of dexmedetomidine on the ventilatory response to hypercapnia in rabbits. Intensive Care Med 28, 969–975. https://doi.org/10.1007/s00134-002-1338-y

  18. Raillard, M., Detotto, C., Grepper, S., Beslac, O., Fujioka-Kobayashi, M., Schaller, B., Saulacic, N., 2019. Anaesthetic and Perioperative Management of 14 Male New Zealand White Rabbits for Calvarial Bone Surgery. Animals (Basel) 9, E896. https://doi.org/10.3390/ani9110896

  19. Raulic, J., Leung, V.S., Doss, G.A., Graham, J.E., Keller, K.A., Mans, C., Sadar, M.J., Vergneau-Grosset, C., Pang, D.S., 2021. Development and Testing of a Sedation Scale for Use in Rabbits (Oryctolagus cuniculus). J Am Assoc Lab Anim Sci 60, 549–555. https://doi.org/10.30802/AALAS-JAALAS-21-000002

  20. Reabel, S.N., Queiroz-Williams, P., Cremer, J., Hampton, C.E., Liu, C.-C., da Cunha, A., Nevarez, J.G., 2021. Assessment of intramuscular administration of three doses of alfaxalone combined with hydromorphone and dexmedetomidine for endoscopic-guided orotracheal intubation in domestic rabbits (Oryctolagus cuniculus). J Am Vet Med Assoc 259, 1148–1153. https://doi.org/10.2460/javma.20.07.0402

  21. Ren, J., Li, C., Liu, Y., Liu, H., Dong, Z., 2018a. Protective effect of dexmedetomidine against myocardial ischemia-reperfusion injury in rabbits. Acta Cir Bras 33, 22–30. https://doi.org/10.1590/s0102-865020180010000003

  22. Ren, J., Li, C., Ma, S., Wu, J., Yang, Y., 2018b. Impact of dexmedetomidine on hemodynamics in rabbits. Acta Cir Bras 33, 314–323. https://doi.org/10.1590/s0102-865020180040000003

  23. Rousseau-Blass, F., Pang, D.S., 2020. Hypoventilation following oxygen administration associated with alfaxalone-dexmedetomidine-midazolam anesthesia in New Zealand White rabbits. Vet Anaesth Analg 47, 637–646. https://doi.org/10.1016/j.vaa.2020.04.012

  24. Santangelo, B., Micieli, F., Marino, F., Reynaud, F., Cassandro, P., Carfora, A., Petrella, R., Borriello, R., Cataldi, M., Vesce, G., 2016. Plasma concentrations and sedative effects of a dexmedetomidine, midazolam, and butorphanol combination after transnasal administration in healthy rabbits. J Vet Pharmacol Ther 39, 408–411. https://doi.org/10.1111/jvp.12282

  25. Santangelo, Bruna, Micieli, F., Mozzillo, T., Reynaud, F., Marino, F., Auletta, L., Vesce, G., 2016. Transnasal administration of a combination of dexmedetomidine, midazolam and butorphanol produces deep sedation in New Zealand White rabbits. Vet Anaesth Analg 43, 209–214. https://doi.org/10.1111/vaa.12278

  26. Santos, M.A., Lucera, T.M., Horr, M., Santana, I.N., Mattos-Junior, E., 2021. Comparative study on epidural administration of dexmedetomidine, dexmedetomidine-lidocaine or lidocaine in conscious rabbits. Lab Anim 55, 341–349. https://doi.org/10.1177/0023677221993156

  27. Sayce, L.J., Powell, M.E., Kimball, E.E., Chen, P., Gartling, G.J., Rousseau, B., 2020. Continuous Rate Infusion of Ketamine Hydrochloride and Dexmedetomidine for Maintenance of Anesthesia during Laryngotracheal Surgery in New Zealand White Rabbits (Oryctolagus cuniculus). J Am Assoc Lab Anim Sci 59, 176–185. https://doi.org/10.30802/AALAS-JAALAS-19-000076

  28. Sazuka, S., Matsuura, N., Ichinohe, T., 2012. Dexmedetomidine dose dependently decreases oral tissue blood flow during sevoflurane and propofol anesthesia in rabbits. J Oral Maxillofac Surg 70, 1808–1814. https://doi.org/10.1016/j.joms.2012.02.022

  29. Sun, Z., Zhao, T., Lv, S., Gao, Y., Masters, J., Weng, H., 2018. Dexmedetomidine attenuates spinal cord ischemia-reperfusion injury through both anti-inflammation and anti-apoptosis mechanisms in rabbits. J Transl Med 16, 209. https://doi.org/10.1186/s12967-018-1583-7

  30. Terada, Y., Ishiyama, T., Asano, N., Kotoda, M., Ikemoto, K., Shintani, N., Sessler, D.I., Matsukawa, T., 2014. Optimal doses of sevoflurane and propofol in rabbits. BMC Res Notes 7, 820. https://doi.org/10.1186/1756-0500-7-820

  31. Wang, H.-L., Zhang, G.-Y., Dai, W.-X., Shu, L.-P., Wei, Q.-F., Zheng, R.-F., Lin, C.-X., 2019. Dose-dependent neurotoxicity caused by the addition of perineural dexmedetomidine to ropivacaine for continuous femoral nerve block in rabbits. J Int Med Res 47, 2562–2570. https://doi.org/10.1177/0300060519847368

  32. Wang, X.-F., Luo, X.-L., Liu, W.-C., Hou, B.-C., Huang, J., Zhan, Y.-P., Chen, S.-B., 2016. Effect of dexmedetomidine priming on convulsion reaction induced by lidocaine. Medicine (Baltimore) 95, e4781. https://doi.org/10.1097/MD.0000000000004781

  33. Warzybok, J., Bienert, A., Borsuk-De Moor, A., Płotek, W., Kulińska, K., Czerniak, K., Billert, H., Klupczyńska, A., Matysiak, J., Grześkowiak, E., Wiczling, P., 2020. Population analysis to assess the influence of age and body weight on pharmacokinetics and pharmacodynamics of dexmedetomidine in New Zealand White rabbits. Biopharm Drug Dispos 41, 307–316. https://doi.org/10.1002/bdd.2248

  34. Yamamoto, Y., Kawaguchi, M., Kakimoto, M., Inoue, S., Furuya, H., 2007. The effects of dexmedetomidine on myogenic motor evoked potentials in rabbits. Anesth Analg 104, 1488–1492, table of contents. https://doi.org/10.1213/01.ane.0000261518.62873.91

  35. Yanmaz, L.E., Okur, S., Turgut, F., Golgeli, A., 2022. Effects of intramuscular and intranasal administration of midazolam-dexmedetomidine on sedation and some cardiopulmonary variables in New Zealand White rabbits. Vet Anaesth Analg 49, 113–117. https://doi.org/10.1016/j.vaa.2021.10.003

  36. Yu, T., Li, Q., Liu, L., Guo, F., Longhini, F., Yang, Y., Qiu, H., 2015. Different effects of propofol and dexmedetomidine on preload dependency in endotoxemic shock with norepinephrine infusion. J Surg Res 198, 185–191. https://doi.org/10.1016/j.jss.2015.05.029

  37. Zornow, M.H., 1991. Ventilatory, hemodynamic and sedative effects of the alpha 2 adrenergic agonist, dexmedetomidine. Neuropharmacology 30, 1065–1071. https://doi.org/10.1016/0028-3908(91)90135-x

  38. Zornow, M.H., Scheller, M.S., Sheehan, P.B., Strnat, M.A., Matsumoto, M., 1992. Intracranial pressure effects of dexmedetomidine in rabbits. Anesth Analg 75, 232–237. https://doi.org/10.1213/00000539-199208000-00014

Expert Opinion

  1. 1317822* |  220805 Extrapolation of pharmacological properties in man and veterinary species. Some material employed in collating the data displayed here was taken from veterinary product datasheets or extrapolated from pharmacology texts.


Last Updated by 1317822* | on 221016


Monograph Details

bottom of page