Acetylcysteine
Mucolytic (Instillation)
Fischak, C., Klaus, R., Werkmeister, R.M., Hohenadl, C., Prinz, M., Schmetterer, L., Garhöfer, G., 2017. Effect of Topically Administered Chitosan-N-acetylcysteine on Corneal Wound Healing in a Rabbit Model. J Ophthalmol 2017, 5192924. https://doi.org/10.1155/2017/5192924
Gujral, G.S., Askari, S.N., Ahmad, S., Zakir, S.M., Saluja, K., 2020. Topical vitamin C, vitamin E, and acetylcysteine as corneal wound healing agents: A comparative study. Indian J Ophthalmol 68, 2935–2939. https://doi.org/10.4103/ijo.IJO_1463_20
Kopincová, J., Mokrá, D., Mikolka, P., Kolomazník, M., Čalkovská, A., 2014. N-acetylcysteine advancement of surfactant therapy in experimental meconium aspiration syndrome: possible mechanisms. Physiol Res 63, S629-642. https://doi.org/10.33549/physiolres.932938
Lapenna, D., Ciofani, G., Lelli Chiesa, P., Porreca, E., 2020. Evidence for oxidative and not reductive stress in the aged rabbit heart. Exp Gerontol 134, 110871. https://doi.org/10.1016/j.exger.2020.110871
Mikolka, P., Kopincova, J., Mikusiakova, L.T., Kosutova, P., Calkovska, A., Mokra, D., 2016. Antiinflammatory Effect of N-Acetylcysteine Combined with Exogenous Surfactant in Meconium-Induced Lung Injury. Adv Exp Med Biol 934, 63–75. https://doi.org/10.1007/5584_2016_15
Mokra, D., Drgova, A., Mokry, J., Antosova, M., Durdik, P., Calkovska, A., 2015a. N-acetylcysteine effectively diminished meconium-induced oxidative stress in adult rabbits. J Physiol Pharmacol 66, 101–110.
Mokra, D., Drgova, A., Petras, M., Mokry, J., Antosova, M., Calkovska, A., 2015b. N-acetylcysteine alleviates the meconium-induced acute lung injury. Adv Exp Med Biol 832, 59–67. https://doi.org/10.1007/5584_2014_7
Wu, X.-Y., Luo, A.-Y., Zhou, Y.-R., Ren, J.-H., 2014. N-acetylcysteine reduces oxidative stress, nuclear factor‑κB activity and cardiomyocyte apoptosis in heart failure. Mol Med Rep 10, 615–624. https://doi.org/10.3892/mmr.2014.2292
Mucolytic
Kopincová, J., Mokrá, D., Mikolka, P., Kolomazník, M., Čalkovská, A., 2014. N-acetylcysteine advancement of surfactant therapy in experimental meconium aspiration syndrome: possible mechanisms. Physiol Res 63, S629-642. https://doi.org/10.33549/physiolres.932938
Mikolka, P., Kopincova, J., Mikusiakova, L.T., Kosutova, P., Calkovska, A., Mokra, D., 2016. Antiinflammatory Effect of N-Acetylcysteine Combined with Exogenous Surfactant in Meconium-Induced Lung Injury. Adv Exp Med Biol 934, 63–75. https://doi.org/10.1007/5584_2016_15
Nebulisation | Instillation
DiBlasi, R.M., Micheletti, K.J., Zimmerman, J.D., Poli, J.A., Fink, J.B., Kajimoto, M., 2021. Physiologic Effects of Instilled and Aerosolized Surfactant Using a Breath-Synchronized Nebulizer on Surfactant-Deficient Rabbits. Pharmaceutics 13, 1580. https://doi.org/10.3390/pharmaceutics13101580
Dijk, P.H., Heikamp, A., Oetomo, S.B., 1998. Surfactant nebulization versus instillation during high frequency ventilation in surfactant-deficient rabbits. Pediatr Res 44, 699–704. https://doi.org/10.1203/00006450-199811000-00012
Dijk, P.H., Heikamp, A., Piers, D.A., Weller, E., Bambang Oetomo, S., 1997. Surfactant nebulisation: safety, efficiency and influence on surface lowering properties and biochemical composition. Intensive Care Med 23, 456–462. https://doi.org/10.1007/s001340050358
Ellyett, K.M., Broadbent, R.S., Fawcett, E.R., Campbell, A.J., 1996. Surfactant aerosol treatment of respiratory distress syndrome in the spontaneously breathing premature rabbit. Pediatr Res 39, 953–957. https://doi.org/10.1203/00006450-199606000-00005
Fajardo, C., Levin, D., Garcia, M., Abrams, D., Adamson, I., 1998. Surfactant versus saline as a vehicle for corticosteroid delivery to the lungs of ventilated rabbits. Pediatr Res 43, 542–547. https://doi.org/10.1203/00006450-199804000-00018
Flavin, M., MacDonald, M., Dolovich, M., Coates, G., O’Brodovich, H., 1986. Aerosol delivery to the rabbit lung with an infant ventilator. Pediatr Pulmonol 2, 35–39. https://doi.org/10.1002/ppul.1950020110
Fok, T.F., al-Essa, M., Dolovich, M., Rasid, F., Kirpalani, H., 1998. Nebulisation of surfactants in an animal model of neonatal respiratory distress. Arch Dis Child Fetal Neonatal Ed 78, F3-9. https://doi.org/10.1136/fn.78.1.f3
John, E., Ermocilla, R., Golden, J., Cash, R., McDevitt, M., Cassady, G., 1980. Effects of gas temperature and particulate water on rabbit lungs during ventilation. Pediatr Res 14, 1186–1191. https://doi.org/10.1203/00006450-198011000-00007
Koten, M., Uzun, C., Yagiz, R., Adali, M.K., Karasalihoglu, A.R., Tatman-Otkun, M., Altaner, S., 2001. Nebulized surfactant as a treatment choice for otitis media with effusion: an experimental study in the rabbit. J Laryngol Otol 115, 363–368. https://doi.org/10.1258/0022215011907848
Ricci, F., Mersanne, A., Storti, M., Nutini, M., Pellicelli, G., Carini, A., Milesi, I., Lombardini, M., Dellacà, R.L., Thomson, M.A., Murgia, X., Lavizzari, A., Bianco, F., Salomone, F., 2022. Preclinical Assessment of Nebulized Surfactant Delivered through Neonatal High Flow Nasal Cannula Respiratory Support. Pharmaceutics 14, 1093. https://doi.org/10.3390/pharmaceutics14051093
Stehlin, C.S., Schare, B.L., 1980. Systemic and pulmonary changes in rabbits exposed to long-term nebulization of various therapeutic agents. Heart Lung 9, 311–315.
Wang, J., Bu, G., 2000. Influence of the nasal mucociliary system on intranasal drug administration. Chin Med J (Engl) 113, 647–649.
Wang, Q., Liu, Y., Zhu, Z., Hu, J., Li, L., Wang, S., 2020. A comparison of the delivery of inhaled drugs by jet nebulizer and vibrating mesh nebulizer using dual-source dual-energy computed tomography in rabbits: a preliminary in vivo study. Ann Transl Med 8, 1072. https://doi.org/10.21037/atm-20-1584
Expert Opinion
1317822* | 220719 Extrapolation of pharmacological properties in man and veterinary species. Some material employed in collating the data displayed here was taken from veterinary product datasheets or extrapolated from pharmacology texts.